EFFECT OF DIFFERENT MECHANICAL SURFACE TREATMENTS ON BOND STRENGTH OF ACRYLIC TEETH TO POLYAMIDE DENTURE BASE

Alaa Aaser Soliman *, Mohamed Nabeel Elgendy ** and Mohamed M. El-Sheikh ***

ABSTRACT

Purpose: To compare the effects of three surface treatments on bond strength between acrylic teeth and polyamide denture base.

Material and Methods: 60 specimens, each composed of maxillary central acrylic cross-linked incisor tooth processed onto thermoplastic polyamide denture base according to the Japanese Standards Association 6506. Test specimens were divided according to the experimental design: Surface treatments (sandblasting, T-shape diatoric holes, or both). The specimens were then subjected to shear load with the Universal Testing Machine. Load was applied till denture teeth separated from the base resin. The resulting debonding forces were recorded and statistically analyzed by using T student-test and ANOVA test followed by Tukey HSD test. The interface where failure occurred was inspected to determine the type of failure whether adhesive or cohesive.

Results: Statistical significant differences were found in bond strength among the different surface treatment groups (P<0.05).

Conclusion: Within the limitations of this in-vitro study, under normal storage condition, it can be concluded that sandblasting of the diatoric holed teeth give the highest bond strength.

KEY WORDS: Bond strength, Diatoric hole, Sandblasting, polyamide denture

INTRODUCTION

The integrity of removable dentures depends mainly on the bond strength between denture teeth and denture base 1; however, debonding of denture teeth from denture base is a common mode of failure in prosthetic dentistry. Schnoover et al., were the first to study bond strength of teeth and denture base resins.2 Since then; studies have been made to evaluate bonding of acrylic teeth to denture base resins.3

Bond strength of denture teeth to denture base is mainly related to the properties of both

* Demonstrator, Department of Prosthetic Dentistry, Faculty of Dentistry, University of Tanta, Egypt.
** Lecturer, Department of Prosthetic Dentistry, Faculty of Dentistry, University of Tanta, Egypt.
*** Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, University of Tanta, Egypt.
Acrylic cross-linked teeth have poor bonding to denture base resin because of their crystalline structure as well as less available unlinked polymer chains for creation of interwoven polymer network between the teeth and denture base. Bond strength of teeth to heat cure acrylic base is greater than their bond to thermoplastic base because the bond to thermoplastic base resin is purely mechanical, so the problem of teeth detachment which was already present with heat cure acrylic base is increased with thermoplastic polyamide.

Several studies have been done to enhance the bond strength of acrylic teeth to denture base which can be categorized into: Mechanical and Chemical modification of ridge lap or combination of both. Mechanical modification include micromechanical or macromechanical treatment as grinding, cutting retention grooves and diatorics and high-energy abrasion.

This study was carried out to evaluate the effect of 3 different types of mechanical surface treatments on the bond strength between acrylic cross-linked teeth to thermoplastic polyamide denture base.

The null hypothesis was that there is no difference in bond strength among different surface treatments of acrylic teeth.

MATERIALS AND METHODS

A total of 60 acrylic cross-linked maxillary central incisor denture teeth (Acry Rock V teeth; Ruthenium group; mould size S67) were used with thermoplastic polyamide denture base (breflex 2nd edition, Bredent) were used as the denture base material.

60 wax test specimens were prepared and divided into: 3 subgroups, 20 each, according to the experimental design illustrated in Table 1.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Surface treatment</th>
<th>Number of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>G I</td>
<td>Sandblasting</td>
<td>20</td>
</tr>
<tr>
<td>G II</td>
<td>T-shape diatoric holes</td>
<td>20</td>
</tr>
<tr>
<td>G III</td>
<td>T-shape diatoric holes with sand blasting</td>
<td>20</td>
</tr>
</tbody>
</table>

Test specimens were prepared simulating clinical condition, as described in Japanese Standards Association No.6506. Master specimen was prepared by aligning the teeth long axis at 45 degree to the base of a wax block, of size (10mmX10mmX30mm) with ridge lap contacting the base (Fig.1). A metal die was fabricated by using the master specimen. Silicone mold was fabricated by taking impression of the metal die. The cross-linked acrylic teeth of same brand and size were placed in the mold and molten wax was flown into it to form the specimen base. Angulation was measured with a profile projector to rule out any alignment discrepancy.

The waxed patterns were flanked in metal flasks. After dewaxing, flasks were allowed to cool at room temperature (Fig.2) then separating medium was applied to the stone and let to dry.

Surface treatments:
- **Group I:** 20 specimens were sandblasted with sandblasting machine (Renfert, Basic eco).
- **Group II:** 20 specimens were prepared with T-shape diatoric holes at ridge lap.
- **Group III:** 20 specimens were prepared with T-shape diatoric holes then sandblasted as in group I.

Diatoric holes preparation and standardization

One tooth was used to create a jig as described by Olive to ensure that all teeth had diatorics in exactly the same position, thus eliminating variables during testing.
Storage of the specimens

All finished specimens were stored in distilled water for 50 hours (h) at 37°C in digital incubator (Biotech company) according to the revised A.D.A specification no.12 for denture base polymers.12

Testing method

Each specimen was held securely in a stainless steel jig of the Universal Testing Machine (Model 3345; Instron Industrial Products, Norwood, MA, USA) to avoid any change in position. The specimens were then subjected to shear load at 45 degree from the tooth long axis on the palatal surface (Fig.3) with cross head speed of 1mm/minute. All tests were done under uniform atmospheric conditions of 23±10°C temperature. Load was applied till the teeth separated from the base. The resulting debonding forces were recorded in newton (N) and statistically analyzed.

The failure interface was inspected and classified into 2 categories: Adhesive: if fracture occurred at tooth resin interface, Cohesive: if fracture occurred within resin or tooth.

Statistical analysis:

Data were collected, tabulated and statistically analyzed using T student-test and ANOVA test followed by Tukey HSD test if P value ≤0.05, (SPSS 20; Inc. Chicago, USA). P values ≤0.05 were considered to be statistically significant in all tests.

RESULTS

Effect of surface treatments

Mean debonding forces and standard deviation ±SD are listed in Table 2.

Mean debonding force for G II was significantly higher than GI, (P ≤0.05). Mean debonding force for G III was significantly higher than G I and GII (P ≤0.05).

Mode of failure

Distribution of mode of failure in different groups is given in Table 3. It showed that the failure mode was adhesive failure in all the experimental groups.
TABLE (2): Mean debonding force in different surface treatments

<table>
<thead>
<tr>
<th></th>
<th>Range</th>
<th>Mean</th>
<th>±</th>
<th>(SD)*</th>
<th>F. test</th>
<th>p. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G I</td>
<td>21.49</td>
<td>35.91</td>
<td>±</td>
<td>(5.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sand blasting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G II</td>
<td>35.74</td>
<td>45.79</td>
<td>±</td>
<td>(3.96)</td>
<td>149.56</td>
<td>.001*</td>
</tr>
<tr>
<td>(T-shape diatoric holes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G III</td>
<td>58.04</td>
<td>65.76</td>
<td>±</td>
<td>(2.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T-shape diatoric holes with sand blasting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Standard deviation
†: statistical significant differences

TABLE (3): Distribution of mode of failure according to different groups

<table>
<thead>
<tr>
<th></th>
<th>Adhesive failure</th>
<th>Cohesive failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>G I</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>(Sand blasting)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G II</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>(T-shape diatoric holes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G III</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>(T-shape diatoric holes with sand blasting)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

The null hypothesis was rejected as the bond strength was different among different mechanical surface treatments of acrylic teeth.

The Japanese standard JIS T No.6506 was followed as it is much more clinically acceptable because it involves the true shape of anterior teeth and simulates the direction of shear and compressive loads more accurately.9,13

Mechanical surface treatment was done after wax elimination because if the T-shape diatorics are drilled during setup and in case of faulty de-waxing, some wax may remain in the diatorics, causing incomplete flow of the molten polyamide. A weakened three-finger design will result as found by Singh et al. and Yunus et al.14

All specimens were stored in distilled water at 37±1 °C for 50±2 h before testing according to the revised A.D.A Specification No.12 for denture base polymers.12

Regarding the effect of mechanical surface treatment, the highest debonding force was recorded in group III (diatorics with sandblasting). This is consistent with Bhochhibhoya et al.15 and Takahashi et al. who found that diatoric preparation improved the bond strength to acrylic resin denture base. Also, Fletcher et al.,16 explained why surface roughening improves the bond strength, by the fact that the surface energy of newly exposed acrylic was different from that of unprepared acrylic.

However, Buyukyilmaz et al.,17 did not find any significant advance in bond strength with diatoric preparation. Bragaglia et al.,13 explained acrylic base material failure in the diatorics by the borders sharpness that might cause stresses concentration.
CONCLUSION

Within the limitations of this in-vitro study it can be concluded that Sandblasting of the acrylic teeth gives the lowest bond strength; on the other hand, sandblasting of teeth having t-shape diatoric holes gives the highest bond strength.

REFERENCES

11. Olive Van Der N. Mechanical retention of acrylic teeth onto a pure nylon base. 2014.

