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ABSTRACT

Objectives: The aim of this in-vitro study was to investigate the marginal and internal adaptation 
of two screw-retained crowns; lithium disilicate and BioHPP using direct optical and subtractive 
reverse engineering techniques and to calculate the degree of agreement between them. 

Materials & Methods: Twenty-eight implant analogs were embedded perpendicularly in an 
auto-polymerizing resin. Implant-supported restorations were designed then milled with CAD wax 
and divided into 2 groups according to material (n=14): Lithium disilicate and BioHPP. Each group 
was pressed according to the manufacturer’s instructions. The marginal and internal adaptation of 
the specimens were analyzed using DOT & subtractive RET. Data were explored for normality 
using Shapiro-Wilk’s and Levene’s tests and were analyzed using independent and paired t-test 
for inter and intragroup comparisons respectively with a significance level of p<0.05. Agreement 
analysis was done using intraclass correlation coefficient (ICC). 

Results: BioHPP screw-retained implant-supported crowns showed higher marginal gap than 
lithium disilicate, yet the difference was non-significant when measured using DOT, while it was 
significant when measured using sRET. Calculated agreement between the two techniques at the 
marginal level showed that there was a statistically significant moderate agreement between both 
methods. Regarding internal adpatation, BioHPP had a statistically significant higher internal gap 
than lithium disilicate group. 

Conclusions: Supra-structure material affected marginal and internal adaptation of implant-
supported restorations. Pressed lithium disilicate crowns showed better marginal and internal 
adaptation than BioHPP crowns, however, both groups showed clinically acceptable results. DOT 
and RET were both relevant and showed moderate agreement between them.

KEYWORDS: BioHPP, Lithium Disilicate, Titanium base, implant-supported crowns, reverse 
engineering technology. 
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INTRODUCTION 

The success of implant restorations relies not 
only on successful osseointegration but also signifi-
cantly on the success of the implant suprastructure. 
(1,2) Advances in ceramic and polymer-based materi-
als have expanded their use in restoring single im-
plants.(3) The selection of implant abutments plays a 
significant role on the success of implant-supported 
restorations from the functional, biological and es-
thetic perspectives. (4–7)

All-ceramic abutments have gained a wide 
popularity owing to the high esthetic requirements 
demanded by both prosthodontists and patients. 
However, technical complications have been 
encountered such as wear and brittle fracture at the 
implant-abutment connection.(8) This was overcome 
by using a hybrid abutment where a ceramic 
abutment is bonded to a titanium base (Ti-base). 
This design replaces the connecting part with a 
titanium-to-titanium connection, while preserving 
the benefits of esthetics, tissue biocompatibility and 
possibility of customizing the whole restoration 
design using digital technology. (9,10)	

Different ceramic and polymer-based materials 
have been used over the Ti-Base. Such as zirconia, 
reinforced glass ceramics, hybrid ceramics, 
polyetheretherketone (PEEK) and biocompatible 
high-performance polymer (BioHPP). (11–15) Lithium 
disilicates are characterized by their favorable 
esthetics, high refractive index, good gingival 
response and mechanical properties. (8,16–18) Its use as 
a hybrid abutment has been investigated by some 
studies. (14,15,19,20)	

PEEK is a synthetic, tooth-colored polymeric 
material with a semicrystalline structure used in 
different medical and dental applications.(21) The 
tensile strength of PEEK, 110 MPa, is insufficient 
to withstand loads, thus pure PEEK has been fre-
quently used as provisional implant abutments.(12,22) 
BioHPP is a PEEK variant strengthened with ce-
ramic fillers; aluminum oxide and zirconium oxide  
occupying 20% of its volume and with a grain size of 

about 0.3-0.5 microns. (23,24) It has a flexural strength 
of 150 MPa and modulus of elasticity 4 GPa which 
is close to the human bone. (25,26) Its low stiffness pro-
vide a distinct advantage over metals and ceramics. 
It enables the material to distribute the forces and 
transfer them to the underlying structures, reducing 
the risk of fracture particularly in implant-support-
ed restorations. (23,27,28) Additionally, its low density 
1.32g/cm3, makes it well perceived by patients and 
a commonly used implant framework. (23,29,30) BioHPP 
is available in the form of blocks for milling using 
computer aided design/computer aided manufactur-
ing (CAD/CAM) techniques and pellets and granules 
for pressing using heat-press techniques. BioHPP 
crowns can be used as a fully anatomic restoration or 
it can be veneered, however, due to its opaque gray 
or whitish color, it is usually veneered with special 
composite resin. (23,28) 

Marginal and internal fit are vital to the long-
term success of any dental restoration.(31) Marginal 
gap is the vertical distance between the finish line 
and the restoration, while internal fit is the distance 
between the axial and occlusal walls of the abutment 
and inner surface of restoration. Lack of adequate fit 
is potentially detrimental to the implant, supporting 
tissues and supra-structure.(32) A wide gap at the 
abutment level results in faster cement dissolution, 
creating recesses for plaque accumulation and 
bacterial adherence which leads to bone resorption 
around implants.(33) Additionally, a thicker cement 
layer will increase polymerization shrinkage and 
interfacial stresses, which may reduce the fracture 
resistance of restorations. (34) Consequently, adequate 
fit between implant components is crucial to 
minimize mechanical and biological complications. 

(35) No consensus has been reached regarding the 
acceptable marginal gap width.(34,36) Clinically 
acceptable marginal gap has been reported to be 
within 50-120μm.(37–44) One of the most referenced 
studies by McLean and Von Fraunhofer in 1971, 
(43) concluded that a marginal gap of no more than 
120μm was clinically acceptable after clinical 
examination of more than 1000 crowns at 5 years. 



IN VITRO INVESTIGATION OF MARGINAL & INTERNAL ADAPTATION OF TWO SCREW-RETAINED (2647)

Several methods have been used to investigate 
marginal and internal adaptation of restorations such 
as: direct optical technique (DOT), which is a non-
invasive, time-saving technique and has less chance 
of error accumulation as it doesn’t require multiple 
steps. However, it can measure the vertical marginal 
gaps only using light, stereo- or scanning electron 
microscopes.(45,46) Silicon replica technique; is a 
more technique sensitive method that replicates the 
cement space to measure the marginal and internal 
gaps.(47,48) However, most of these techniques are 
2-dimensional, have limited measuring points 
and are sometimes also destructive.(49) Reverse 
engineering technique (RET), on the other hand, 
has the advantage of using computer softwares for 
3-dimensional (3D) non-destructive analysis where 
3D image data is created by connecting more than 
a thousand points of data in the form of a triangular 
mesh and the subsequent 3D image data can be 
analyzed qualitatively and quantitatively without 
losing data of the overall surface. (50–53) sRET, is 
a 3D superimposition analysis technique which 
depends on subtractive analysis of abutment scan 
and cement space scan; represented by polyvinyl 
siloxane. A 3D difference analysis of the matched 
scans represents the thickness of the cement. This 
technique has been considered a reliable method 
by many previous studies.(51,54–57) There is still no 
standard protocol used to assess the fit of dental 
restorations. (51,52)

The aim of this in-vitro study was to:

1.	 Investigate the marginal and internal adaptation 
of two screw-retained implant-supported 
crowns; lithium disilicate and BioHPP 
using direct optical and subtractive reverse 
engineering techniques.

2.	 Calculate the degree of agreement of both 
techniques when measuring the marginal gap. 
The null hypothesis was that the material will not 
influence the marginal and internal adaptation of 
screw retained crowns and that there will be no 
agreement between both measuring techniques.

MATERIALS AND METHODS

Twenty-eight implant analogs (Zimmer Biomet 
Implant System, Aston Ave., Carlsbad, USA.), 
3.5mm in diameter were embedded perpendicularly 
in an auto-polymerizing resin (Technovit 4,000; 
Heraeus Kulzer, Wehrheim, Germany) using a 
dental surveyor (Ney, DeguDent GmbH, Germany). 
The upper edges of the analogs were extended 2 
mm above the level of the surrounding material to 
simulate crestal bone resorption.(58) According to the 
previous results of Anadioti and Evanthia(59), Park et 
al(60), Silva et al (61) and Urhenbacher et al(62) in which 
the effect size (f) was (0.67) and by adopting an 
alpha (α) level of 0.05 (5%), a Beta (β) level of 0.20 
(20%) i.e. power=80%. The predicted sample size 
(n) was 28 specimens i.e. 14 for each group. Sample 
size calculation was performed using G*Power 
version 3.1.9.2.

Screw-retained crown simulating a maxillary 
first premolar was designed using CAD software 
(DentalCAD; exocad, Darmstadt, Germany). The 
general outline was as follows: 11.5 mm occluso-
cervical height, 8.5 mm bucco-lingual width, 8 
mm mesio-distal width. (14) The Ti-base (Zenotec 
Titanbasis System F, Wieland Dental, Pforzhei, 
Lindenstraße, Germany) used was 3 mm in height 
with 0.5 mm wide shoulder. 

Twenty-eight screw-retained crowns were milled 
from CAD wax blocks (Telio CAD, Ivoclar Viva-
dent; Schaan, Liechtenstein) using a 5-axis milling 
machine (Roland Dwx50, Tokyo, Japan). A cement 
space was set to 60 µm at the axial and occlusal 
surfaces to avoid the need for manual adjustments 
after milling. (63) The specimens were divided into 
two main groups (n = 14) according to material: 
lithium disilicate (IPS e.max Press; Ivoclar Viva-
dent, Schaan, Liechtenstein) and BioHPP (Bredent 
GmbH & Co. KG, Senden, Germany). Each group 
was pressed according to the manufacturer’s in-
structions of each material. Specimens were seat-
ed to their respective Ti-base, and finishing and  
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polishing of the pressed screw-retained crowns was 
carried out as shown in Figure 1.	

Marginal gap was measured using DOT and sRET. 
For the DOT, four equidistant points were marked 
on each side (buccal, mesial, distal, and palatal) 
of the Ti-base, resulting in 16 reference points. A 
stereomicroscope (Olympus SZ61; Olympus Corp, 
Tokyo, Japan) under ×40 magnification was used to 
measure the marginal gap. Images were analyzed 
using an image analysis software (Olympus DP2-
SAL; Olympus Corp, Tokyo, Japan). (34) Vertical 
gaps between the cervical margin of the abutment 
and the Ti-base were calculated automatically with 
phase analysis. Collected data was tabulated using 
Microsoft Excel (Microsoft Office 2013). Vertical 
gap mean (in microns) for each specimen was 
calculated and tabulated for statistical analysis. 

For the sRET group, a subtractive technique 
was used for 3D analysis of both the marginal and 
internal adaptation of the screw-retained crowns. 
The Ti-base surface was scanned using a digital 
scanner (E4, 3Shape, Copenhagen, Denmark) after 
coating its surface with a light spray to reduce 
reflectivity. The exported STL scan was named 
“Reference model.” Then the internal surface of 
the crown was coated with a thin layer of silicone 
oil and dried with a cotton swab and high-pressure 
air. The crown was filled with light-body polyvinyl 
siloxane (3M Express VPS, MN, USA) and seated 
on its corresponding Ti-base. A 20 N load was 
equally applied on the crown for 10 minutes. After 
complete polymerization, excess silicone was 
carefully removed with a scalpel and the crown was 
quickly removed from the abutment, leaving a thin 
layer of light-body polyvinyl siloxane simulating 
the cement space firmly adhered to the Ti-base. 
The Ti-base covered with the silicon replica was 
scanned using the same optical scanner, and the 
exported STL file was named “Test model.” The 
Reference and Test models were imported into 

reverse engineering software (Geomagic Control, 
3D Systems, NC, USA). The two STL files were 
superimposed using the corresponding base part of 
the Ti-base, and then the gap space was extracted 
by subtracting the Test model from the Reference 
model, Figure 2. (51,52,54–57)

Color-coded difference images were used to ex-
amine the similarilty of Ti-base surface and internal 
surface of restoration qualitatively. However, quan-
titatively dimensional differences between refer-
ence and test model were computed for every data 
point captured during digitalization. The root mean 
square (RMS) was calculated by the following for-
mula: 

RMS =
√ ∑n

i=1(x 1,i − x2,i) 
2

n

where x1,i is the measuring point i on reference, x2,i 
is the measuring point i on test, and n is the total 
number of measuring points. 

RMS serves as a measure of how different the 
two datasets vary from zero. RMS measurements 
were split into two distinct areas: marginal, which is 
0.4 mm horizontally from the finish line and axial, 
representing the middle third of the axial wall, Fig-
ure 3. RMS data was recorded and used for statisti-
cal analysis. The agreement of DOT and sRET in 
measuring marginal gap was also calculated using 
statistical agreement analysis. 

Data were presented as mean and standard de-
viation (SD) values. Shapiro-Wilk’s and Levene’s 
tests were used to test normality and variance re-
spectively. Marginal and internal gaps were mea-
sured using independent and paired t-test for inter 
and intragroup comparisons. Agreement analysis 
was done using intraclass correlation coefficient 
(ICC). Significance was set at p <0.05 in all tests. R 
statistical analysis software version 4.3.1 for Win-
dows was used for statistical analysis. (64)
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Fig. (1): Screw-retained crowns after pressing. 
A: Lithium Disilicate. B: BioHPP.

Fig. (2) Subtractive RET workflow for measur-
ing marginal and internal gaps.
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RESULTS

Data explored for normality showed parametric 
distribution. Intergroup comparisons for marginal 
gap values are presented in Table 1. For marginal 
gap values measured using DOT, BioHPP had higher 
marginal gap values than lithium disilicate group, 
however, there was no significant difference (p = 
0.060). While for sRET, BioHPP had a significantly 
higher gap value than lithium disilicate (p < 0.001). 
Mean and standard deviation values for marginal 
gap in different groups are presented in Figure 4.

Agreement of marginal gap measuring techniques 
is presented in Table 2. Results showed that there was 
no significant difference between both measurements 
(p = 0.936) and there was a statistically significant 
moderate agreement between both methods (ICC = 
0.681, p = 0.024). Mean and standard deviation val-
ues for marginal gap measurements using the two 
methods are presented in Figure 5.

As for the internal gap, independent t-test 
showed that BioHPP group also had a statistically 
significant higher internal gap values than lithium 
disilicate group (p < 0.001) as show in Table 3.

Fig. (3) Subtractive RET showing color coded maps using Geomagic analysis. A: Internal fit, B: Marginal fit.

TABLE (1) Intergroup comparison of marginal gap.

Measurement method 
Marsinalsap (µm) (Mean±SD)

t-value  p-vaiue 
Lithium disilicate BioHPP

Direct Optical technique 64.28±3.97 70.70±7.17 2.07 0.060

Subtractive RET 64.02±0.64 70.73±1.46 11.16 <0.001*

Significant (p<0.05)

TABLE (2) Agreement between marginal gap measuring techniques.

Marginal gap (µm) (Mean±SD)
Mean difference

(95% CI)
t-value p-value  ICC (95% CI) Direct Optical  

Technique
3D Superimposition Analysis 

Technique

67.49±6.49 67.37±3.65 0.12 (-2.95:3.19) 0.08 0.936 0.681 (0.037:0.897)*

CI= Confidence interval, *Significant (p<O.OS)
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TABLE (3) Mean ± standard deviation (SD) of 

internal gap (µm) measured by subtractive 

RET.

Material Internal gap (µm) 
(Mean ± SD) p-value

Lithium Disilicate 65.96 ± 2.06
0.027*

BioHPP 68.47 ± 1.64

*Significant (p < 0.05)

Fig. (4) Bar chart showing mean and standard deviation values 
of marginal gap (µm).

Fig. (5) Bar chart showing mean and standard deviation values 
of marginal gap measured using different techniques 
(µm).

DISCUSSION

The first null hypothesis that supra-structure ma-
terial would not influence the marginal and internal 
adaptation values of the two screw-retained crowns 
was rejected. Screw-retained BioHPP crowns had 
higher mean gaps than lithium disilicate crowns at 
both the marginal and the internal levels. However, 
the mean marginal and internal gaps of both materi-
als were less than 71 µm which lies within the clini-
cally acceptable range of 50-150µm. (41,43,65,66)

Marginal and internal gaps can be assessed 
using multiple ways, there is no agreement yet 
on a standard method. In our study, marginal gap 
was assessed using DOT and sRET, agreement 
between both techniques was also evaluated. DOT, 
is one of the most commonly used techniques, 
however it’s limited to certain measuring points. 
sRET, on the other hand, is a valid and reliable 
3D technique to assess the marginal and internal 
adaptation of fixed restorations. The convenience 
of data handling and increased data utilization 
allows various applications, such as qualitatively 
showing discrepancies using color-coded maps and 
quantitatively calculating discrepancies in a specific 
region and the entire volume of the gap space. (54–57) 
Some studies have also used RETs (48,51–53,60,67–69), 
yet few have compared its reliability to other 
measurements techniques.(48,49,55,56,70)

According to our study, BioHPP had higher 
marginal gap values than lithium disilicate screw-
retained crowns when measured using both 
techniques. However, the difference was statistically 
significant with the sRET and non-significant with 
DOT, thus the second null hypothesis was rejected. 
This could support what Groten et al (50) reported; 
that increasing the number of measuring points 
gains more data and thus, increase the level of 
significance, accuracy and reliability, which was 
obtained with the sRET. The agreement between both 
techniques according to the statistical calculation, 
found that both were considered reliable as there 
was no significant difference between them rather 
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a significant moderate agreement. This supports 
the concept that sRET analysis can be a reliable 
measuring technique to gain more data. This was in 
agreement with El-Ashkar et al; (49) who compared 3 
different techniques: direct optical, replica and 3D 
superimposition analysis and found similar results 
with DOT and 3D superimposition analysis.(48) Also, 
Hasanzade et al; (71) who compared replica and 3D 
analysis techniques and found that both measuring 
techniques had highly reliability, however, 3D 
superimposition provided higher values in axial and 
absolute marginal gap assessment.

Regarding the material, Arshad et al; (28) found 
that BioHPP crowns had larger marginal gaps than 
lithium disilicate crowns when measured using 
microcomputer tomography. Kayikci et al;(72) found 
that 3-unit peek implant-supported restorations 
had higher marginal gap than titanium implant-
supported fixed partial dentures regardless the 
method of fabrication. Other studies comparing 
marginal gap of BioHPP and crowns with different 
materials found that BioHPP had a larger marginal 
than other materials used. (73–75) Attia et al; (76) 

compared different forms of PEEK; pellets, granules 
and milled to zirconia copings and found that there 
was no difference in marginal gap between milled 
PEEK and zirconia, while there was a significantly 
higher marginal gaps for the pressed than the milled 
PEEK copings. In contrast, PEKK has shown better 
marginal gaps than lithium disilicates according to 
Park et al;(60) who found that milled PEKK crowns 
had lower marginal gaps than lithium disilicate 
crowns. They attributed this to the absence of 
the crystallization cycle with PEKK than lithium 
disilicate which undergoes slight contraction on 
crystallization causing a negative effect on marginal 
fit. Also, Bae et al;(77) found that PEKK had better 
marginal adaptation than zirconia copings.

Regarding internal adaptation, our results 
showed that pressed lithium disilicate screw-
retained crowns had better internal adaptation than 
pressed BioHPP. This was in contrast to Park et al (78) 
who compared PEEK crowns with lithium disilicate 

and zirconia crowns using replica technique and 
3D analysis. They found that PEEK had the lowest 
axial gap followed by lithium disilicate then 
zirconia. Arshad et al; (28) found that milled BioHPP 
crowns had lower axial gaps than pressed lithium 
disilicate crowns using mirco-CT analysis, however 
there was no significant difference in their internal 
volume. This was attributed to the lower cement 
space in milled crowns that can cause incomplete 
seating which is usually seen as low axial gaps 
with large occlusal gaps. Attia M et al; (79) found 
that milled PEEK crowns had better marginal 
and internal adaptation than pressed PEEK when 
measured using micro-CT. However, the mean 
internal gaps at the mid-axial walls were found to 
be close to the results of our study (71-72 µm) for 
PEEK pellets. The difference between our study and 
other studies Avon be attributed to the difference in 
the processing techniques (pressed or milled) and 
measuring tools used.

The increased marginal and internal gaps of 
BioHPP could be due to the semicrystalline structure 
of BioHPP which contains ceramic fillers embedded 
in resin matrix, the injection molding technique; 
which may cause degradation of the polymer, the 
preheating method, the vacuum pressing device and 
the shrinkage of the material during polymerization. 
(80) On the other hand, the higher grain size of lithium 
disilicate crystals and crystallization of lithium 
disilicate may potentially impact the mechanical 
performance and best fit of the material. (81,82) 

Misfit between different implant prosthetics 
components is of major concern as it will not only 
cause mechanical problems, it also plays a crucial 
role on the biologic success of the implant-supported 
restorations. (41,83) The attachment of the peri-implant 
mucosa to the surrounding abutment, is what creates 
a mucosal seal to protect the underling peri-implant 
bone from the ingress of oral bacteria. The margin 
between the Ti-base and supporting structure is 
usually placed deep subgingival and close to the 
crest of the bone and although they are cemented 
and polished extra-orally, a large marginal gap can 
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create a recess for bacterial colonization which 
may lead to peri-implantitis, crestal bone loss and 
eventually loss of osseointegration. (84,85) Limitations 
of this study can be attributed to miscalculations 
due to possible inaccuracy and overlapping of the 
scanned data, inability to apply this study clinically 
and that the crowns were not cemented.

CONCLUSIONS

Within the limitations of this study, it was found 
that supra-structure material affected marginal 
and internal adaptation of screw-retained crowns. 
Pressed BioHPP had higher marginal gap values than 
pressed lithium disilicate screw-retained crowns. 
However, the difference was non-significant when 
measured with DOT while significant with sRET. 
The use of adjunct 3D software technologies enables 
more detailed measurements for deeper analysis. 
DOT and RET were both relevant and showed 
moderate agreement between them. Pressed lithium 
disilicate screw-retained crowns showed better 
internal adaptation values than pressed BioHPP 
screw-retained crowns.

LIST OF ABBREVIATIONS 

DOT —- Direct optical technique

sRET —- Subtractive reverse engineering technique

Ti-base — Titanium base

PEEK —- Polyetheretherketone 

BioHPP —- biocompatible high-performance 
polymer 

CAD/CAM —- computer aided design/ computer 
aided manufacturing 

RET —- reverse engineering technique

3D —- 3-dimensional

RMS —- Root mean square

ICC —- intraclass correlation coefficient 

PEKK —- Polyetherketoneketone 
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