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ABSTRACT
Problem: CAD/CAM PMMA, as a provisional material, needs physical, mechanical, and 

biological improvements. 

Purpose: To compare graphene-reinforced PMMA crowns’ marginal adaption and fracture 
resistance to CAD/CAM PMMA crowns under simulated oral conditions.  

Methods: A typodont mandibular first molar was prepared for an all-ceramic crown. Duplicating 
it yielded 20 dental epoxy resin dies. A 3D scanning was performed for each die to design 20 
crowns. Ten crowns were milled from PMMA blanks (P) and 10 from graphene-reinforced PMMA 
blanks (G). Next, resin cement luted each crown to its die. Each specimen was digitally imaged for 
marginal gap assessment. Four equidistant landmarks at each specimen’s cervical circumference 
were measured. A chewing simulator aged tested crowns for 120,000 cycles. The marginal gap 
evaluation was repeated after aging. Each crown was evaluated for fracture resistance in a universal 
testing machine that determined fracture load in Newton. All data were statistically analyzed. 

Results: The tested materials did not differ statistically before or after thermocycling. Group 
(P) showed no statistically significant difference in mean gap distance after thermocycling, while 
Group (G) showed a statistically significant rise (P-value = 0.033, Effect size = 0.719). The fracture 
resistance of the two groups was not significantly different (P-value = 0.839, Effect size = 0.132). 
Conclusions: The mean marginal gap between PMMA and G-PMMA was clinically acceptable. 
Neither material fractured beyond posterior maximal masticatory stresses, demonstrating 
clinical resistance. The clinical uses of graphene-reinforced PMMAs are similar to CAD/CAM 
PMMAs, considering them effective long-term interim materials rather than permanent restorative 
alternatives.

KEYWORDS: CAD/CAM PMMA crowns, graphene-reinforced PMMA, marginal fit, fracture 
resistance, and nanographene.
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INTRODUCTION 

Provisional crowns are necessary to safeguard 
the prepared teeth’ vitality and periodontium.1 
Additionally, they preserve both the oral function 
and esthetic appearance.1,2 The crucial factor for the 
long-term clinical effectiveness of any restorations 
is the marginal adaptation.3-6 Inadequate marginal 
fit can exacerbate microleakage and plaque 
buildup, resulting in the dissolution of cement, 
recurring decay, and the formation of periodontal 
inflammation, ultimately leading to tooth loss.7,8 

Besides marginal adaptation, the fracture resistance 
of interim restorations is of great concern, mainly 
in long-term temporization with patients having 
parafunctional habits or long-span fixed dental 
prostheses.9 

Computer-aided design and computer-aided 
manufacturing (CAD/CAM) technology has 
currently been employed as an indirect method 
in producing provisional crowns.10 CAD/CAM 
PMMA has superior flexural strength to bis-acrylic 
resin and conventional PMMA.11 Based on the 
available evidence, CAD/CAM PMMA has been 
identified as a suitable material for long-term usage 
as a provisional prosthesis.12-15

An extremely strong and elastic flat carbon 
atoms monolayer organized into a two-dimensional 
honeycomb lattice is called “graphene”. It has 
been extensively used to regenerate periodontal 
tissue by coating the implant surface to enhance 
osseointegration.16-18 It possesses strong antibacterial 
characteristics and has demonstrated exceptional 
biocompatibility. Graphene’s advanced properties 
have led to its integration with dental materials, 
including metals, ceramics, and polymers. 

Blending graphene-linked materials and poly-
mers creates composites with increased mechani-
cal characteristics. Remarkably, the enhancements 
remain discernible even when the amount of filler 
added to the polymer matrix is limited. The use of 
graphene and carbon fillers has been demonstrated 
to substantially improve the flexural strength of 

PMMA polymers, leading to significant enhance-
ments in their physicomechanical properties.19,20

This in vitro study evaluated the marginal 
adaptation and fracture resistance of provisional 
crowns manufactured from CAD/CAM PMMA 
and graphene-reinforced PMMA. By comparing 
the two different types of provisional crowns, it was 
possible to make an informed choice of materials 
based on their marginal adaptation features and 
fracture resistance. The current research hypothesis 
was that there would be a significant difference in 
the marginal fit and fracture resistance of graphene-
reinforced PMMA and PMMA polymers that have 
been CAD/CAM milled.

MATERIALS AND METHODS 

Sample size calculation 

Via sample size calculation software (G*Power; 
Version 3.1.9.2, HHUD, Germany), fracture 
resistance was used as the primary power analysis 
outcome. On the basis of Reeponmaha T et al. 
results,11, and using an alpha (α) level of (5%) and β 
level of 0.8 (Power = 80%), the Effect size (d) was 
4.12. The minimum anticipated sample size was 3 
specimens per group, which was increased to 10 
specimens per group. 

Specimens’ preparation

A mandibular first molar typodont tooth was 
prepared to receive a ceramic crown.21 After that, 20 
dental epoxy resin dies were made by duplicating 
it. A 3D dental scanner (Identica Hybrid T500; 
MEDIT Corp., Seoul, Korea) was used to scan each 
prepared die. Designing of crowns (exocad Dental 
CAD; Exocad GmbH, Germany) was performed, 
and then 20 crowns were milled (K5; vhf camfacture 
AG, Germany); 10 crowns from PMMA blanks 
(PMMA DISK; Yamahachi Dental MFG., Aichi 
Pref., Japan), and the other 10 crowns were milled 
from graphene-reinforced PMMA blanks (G-CAM; 
Graphenano Dental, Valencia, Spain). The cement 
space was set at 50 μm. All crowns were abraded 
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with 50-µm Al2O3 particles at a 10-mm distance 
and 45ºangle for 20 seconds (basic Quattro IS; 
Renfert, Hilzingen Germany). Then, the crowns 
were polished on their exterior surface following 
the manufacturer’s instructions. They were then 
subjected to ultrasonic cleaning (Sonorex Super; 
Bandelin, Berlin, Germany) and distilled water 
for 5 min. Lastly, oil-free compressed air drying 
was applied, allowing specimens to dry at room 
temperature for at least 4 weeks.

Sandblasting (CEMAT NT4; Wassermann 
Dental Maschinen GmbH, Hamburg, Germany) 
was used to prepare the dies and crowns for 
cementation.22 Afterwards, applying 250 g of load 
for a minute, the crowns were seated and cemented 
on the corresponding dies using a self-adhesive 
resin cement (G-CEM; GC, IL, USA).23 

Marginal gap distance assessment before aging 

Each specimen was imaged using a 
stereomicroscope with an integrated camera (Nikon 
Eclipse E600, Tokyo, Japan). Three Mega Pixels 
digital camera was positioned vertically at 2.5 cm 
from the specimen. The angle formed by the lens 
axis and the emitting light sources was roughly 
90 degrees. Using a fixed 35× magnification, the 
images were captured at their highest resolution of 
2272 × 1704 pixels and then linked to a computer. 
The photos were captured at a minimum resolution 

of 1280 × 1024 pixels for each image. The gap width 
was measured and analyzed using a computerized 
image analysis system (Image J 1.43U, National 
Institute of Health, USA). All limits, sizes, frames, 
and measurable parameters were expressed in pixels. 
Consequently, the system underwent calibration to 
convert the pixels into precise real-world units. In 
this work, calibration was conducted by comparing 
a ruler of known size with a scale produced by image 
analysis software (ImageJ; National Institutes of 
Health, NY, USA). 

Each specimen was photographed by capturing 
shots of its margins (Fig. 1). For each image, 
morphometric measurements were conducted 
using four equidistant landmarks along the cervical 
circumference of each surface. The measurement at 
every point was conducted three times. 

Artificial ageing 

A dual-axis chewing simulator (four-station 
multimodal ROBOTA chewing simulator; ROBOTA 
Co., Giza, Cairo, Egy Technology Co.) performs 
the artificial aging on the crowns. A servomotor 
(model ach-09075dc-t; AdTech technology co., 
Shenzhen, China) was equipped with an inbuilt 
thermo-cyclic protocol to run this simulator. Both 
groups of specimens were mounted and subjected 
to sequential testing under a weight of 5 kg and 
a chewing force of 49 N for 120,000 cycles.  

Fig. (1): Marginal gap measurements of  PMMA (A) and G-PMMA (B) crowns at each surface using a stereomicroscope.
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This simulation replicated a 6-month clinical service 
period.23,24 Following that, the specimens were 
immersed in distilled water for 3 min to undergo 
ultrasonic cleaning. 

Marginal gap distance assessment after aging 

The specimens were assessed for marginal gap 
distance, as mentioned before. 

Fracture Resistance 

For fracture resistance, every specimen was tested 
on a computer-controlled materials testing machine 
with a 5 kN load cell (Model 3345; Instron, MA, 
USA). The specimens were mounted on the testing 
machine’s lower fixed compartment. A compressive 
mode of the load was applied occlusal through a 
rounded tip metallic rod (8.6 mm diameter) attached 
to the top moveable compartment of the testing 
machine. To guarantee consistent stress distribution 
and lessen the transmission of local force peaks,  
a tin foil sheet was positioned between the rod and 

specimen (Fig. 2). The rod was moved at a cross-
head speed of 1 mm/min. Coinciding with an audible 
crack and marked fracture (Fig. 3) and an abrupt 
decrease in the load-deflection curve occurrence. 
The load at failure was recorded in Newtons as all 
data was collected by computer software (Bluehill 
Universal; Instron, MA, USA).

Fig. (2): A specimen under testing on the universal testing 
machine to evaluate its fracture resistance.

Fig. (3) Fractured specimens; PMMA 
crowns (A) and graphene-
reinforced PMMA crowns (B).
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Statistical Analysis 

By exploring the data distribution and applying 
normality tests (Kolmogorov-Smirnov and Shapiro-
Wilk tests), numerical data showed a normal 
(parametric) distribution using statistical software 
(IBM SPSS Statistics for Windows: Version 23.0; 
IBM Corp., NY, USA). Data were shown as mean 
standard deviation (SD) values. Student’s t-test 
was used to compare the fracture resistance of the 
two material types. Repeated measures ANOVA 
test was used to study the effect of material type, 
thermocycling, and their interactions on mean 
gap distance. Bonferroni’s post-hoc test was used 
for pair-wise comparisons in the significance of 
ANOVA. The significance level was set at P ≤ 0.05. 

RESULTS 

Marginal gap (µm) 

Regardless of thermocycling, material type 
had no statistically significant effect on mean gap 

distance (P-value = 0.887, Effect size = 0.006). 
Similarly, there was no statistically significant 
change in mean gap distance after thermocycling 
(P-value = 0.051, Effect size = 0.654). Additionally, 
the interaction between variables had no statistically 
significant effect on mean gap distance (P-value 
= 0.151, Effect size = 0.440), leading to the 
independence of variables as shown in Table 1. 

Regarding Group (P), there was no statistically 
significant change in mean gap distance after 
thermocycling (P-value = 0.527, Effect size = 
0.107). On the other hand, Group (G) revealed a 
statistically significant increase in the mean gap 
distance after thermocycling (P-value = 0.033, 
Effect size = 0.719), as shown in Table 2.

Fracture resistance (N) 

No statistically significant difference in fracture 
resistance between the two groups (P-value = 0.839, 
Effect size = 0.132) was found as shown in Table 3.

TABLE (1) The mean, standard deviation (SD) values and results of repeated measures ANOVA test for 
main effects of different variables on gap distance (µm).

Source of variation
Type III 
Sum of 
Squares

df Mean 
Square

Mean
(µm) SD F-value P-value

Effect size 
(Partial eta 

squared)

Material type
Group (P)

0.551 1 0.551
38.9 4.1

0.023 0.887 0.006
Group (G) 39.3 4.5

Thermocycling
Before

44.998 1 44.998
37.2 4.3

7.559 0.051 0.654
After 42.5 1.8

Material type x Thermocycling 
interaction 18.686 1 18.686 3.139 0.151 0.440

df: degrees of freedom = (n-1), *: Significant at P ≤ 0.05.
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DISCUSSION 

Polymeric materials, particularly PMMA, are 
essential in fabricating temporary oral prostheses, 
veneers, and crowns in the dental sector.25,26 This 
synthetic polymer satisfies the prosthetic criteria 
in esthetics, mechanical characteristics, chemical 
stability, corrosion resistance, and biocompatibility 
for potential application as a dental material.27-34 
Technological progress in digital dentistry has led 
to the introduction of CAD/CAM PMMA-based 
polymers. A strongly cross-linked structure of these 
materials may provide mechanical advantages over 
conventionally polymerized PMMA resins, making 
them suitable for alternative materials in long-term 
interim prostheses.27

Still, some researchers have documented par-
ticular limitations of the material, including dis-
coloration, hydrolytic degradation, and low frac-
ture resistance.35 Consequently, many researchers 
are currently devoted to enhancing the material’s  

physical, mechanical, and biological characteris-
tics by integrating nanoparticles, such as graphene 
oxide, into its composition to broaden its applica-
tions.36-39 Some authors argue that as chemical and 
mechanical reinforcements using comparable mate-
rials have demonstrated significant enhancements in 
the mechanical characteristics of PMMA, it remains 
difficult to avoid compromising other features such 
as color, translucency, or biocompatibility. One pos-
sible explanation for why PMMA continues to be 
the preferred material for long-term provisionliza-
tion is as indicated.40

Graphene is a honeycomb lattice composed of 
a single layer of sp2 hybridized carbon atoms with 
remarkable properties and viability.41-44 Graphene 
possesses a distinctive combination of various 
exceptional characteristics, including a large specific 
surface area of 2630 m2 g−1, remarkable thermal 
conductivity of 5000 Wm−1 K−1, high intrinsic 
mobility of 200,000 cm2 v−1 s−1, and Young’s 

TABLE (2) The mean, standard deviation (SD) values and results of repeated measures ANOVA test for 
comparison between gap distance (µm) with different interactions of variables.

Thermocycling
Group (P) Group (G)

P-value Effect size  
(Partial eta squared)Mean SD Mean SD

Before thermocycling 38.2 5.2 36.1 4 0.616 0.069

After thermocycling 39.6 3.6 42.5 1.8 0.275 0.285

P-value 0.527 0.033*

Effect size (Partial eta squared) 0.107 0.719

*: Significant at P ≤ 0.05.

Table (3): Descriptive statistics and results of Student’s t-test for comparison between fracture resistance 
(N) of the two groups.

Group (P) Group (G)
P-value Effect size (d)

Mean (N) SD Mean (N) SD

1539.2 80.6 1574.5 368.1 0.839 0.132

*: Significant at P ≤ 0.05.
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modulus of Y < 1.0 Tpa.45-50 Regarding biomedical 
applications, graphene presents various benefits, 
including its biocompatibility and biodegradability, 
strength, flexibility, and antibacterial properties.51-54 
Graphene-based materials can be classified into four 
fundamental groups: single-layer and few-layered 
graphene, graphene oxide (GO), and reduced 
graphene oxide (rGO).55,56

Horizontal discrepancies, such as over-contoured 
margins, permit some clinical modifications. 
Nevertheless, according to Holmes et al.,57 

vertical marginal gaps are more detrimental and 
more difficult to rectify, potentially leading to the 
gradual dissolution of the cement and consequent 
complications and failure.58 Thus, this study 
quantified solely the vertical marginal gap. 

In vitro techniques such as direct visualization, 
cross-sectioning, and the silicone replica technique 
have been employed to quantify the marginal 
gap of restorations. However, each method has 
its limitations.59,60 A direct observation technique 
utilizing a stereomicroscope was selected as it can 
subject the specimen to cementation and occlusal 
loading, as well as simulations that mimic intraoral 
conditions and ensure the preservation of each 
specimen following measurement. Additionally, it 
can analyze the slight difference between the results 
before and after aging. In addition, this approach 
enables measurements to be conducted in several 
positions around each die, minimizing the risk of 
mistakes due to the selection of measurement areas. 

Marginal discrepancies of interim restorations 
are influenced by several factors, such as material 
types, fabrication procedures, thermal and 
mechanical aging, and the interval duration in which 
the restorations are used.35,61-63 The CAD/CAM 
PMMA exhibited high marginal accuracy values 
(38.2±5.2 µm) owing to its uniform and extensively 
cross-linked structure, as well as a polymerization 
process conducted under ideal conditions of high 
pressure and temperature,40,64,65 which resulted in 
reduced water solubility and sorption.65 The study 

by Abdullah et al. revealed that provisional crowns 
produced using CAD/CAM technology exhibit a 
superior fit compared to direct provisional crowns.66 

Nevertheless, G-PMMA exhibited a marginal gap 
distance of 36.1±4 µm, which was not statistically 
significant compared to PMMA. Hence, the 
hypothesis was rejected. 

The thermomechanical aging process influences 
the marginal gap of interim restorations through 
several mechanisms, such as polymerization 
stresses, residual unreacted monomer, voids 
in resins, and water sorption.61,64,67-69 Thermal 
fluctuations induce expansion and contraction of the 
resin, particularly in the thin margin region, resulting 
in the beginning and spread of cracks through 
weak or porous resin areas, potentially leading to 
an increase in the marginal gap.61,64 Moreover, the 
water employed in the process of simulated aging 
has the potential to infiltrate and reduce the length 
of the polymer chain, therefore causing fatigue of 
the resin at the margin. This degradation would 
result in releasing the remaining tension and the 
remaining marginal integrity.61,67,69 The presence 
of moisture in the surroundings can also cause 
the leaching of the remaining monomer, leading 
to a higher concentration of voids near the margin 
and a higher probability of fracture.67 Subjecting 
to repeated occlusal pressure, stress can be evenly 
spread over the temporary crowns. Whenever the 
stress is above the elastic threshold of the resin, 
plastic deformation can take place, distorting the 
marginal region where the plasticizing influence of 
water has already weakened.64,69 

The hypothosis regarding the marginal gap was 
rejected. Both tested materials exhibited an increase 
in the marginal gap distance, with non-significant 
effects in PMMA crowns (39.6±3.6 µm). However, 
a significant difference in G-PMMA crowns’ 
marginal gap distance (42.5±1.8 µm) was observed. 
This occurrence may be attributed to the presence of 
residual monomers and a delay in the polymerization 
reaction caused by graphene interference.70
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The impact of aging on the marginal gap of 
CAD/CAM interim restorations has mostly concen-
trated on CAD/CAM milling interim restorations 
and typically only includes thermocycling.71 Hence, 
it is still necessary to compare with prior research. 
The current investigation found that the marginal 
gap, although increased significantly in G-PMMA 
crowns following aging treatment, remained within 
a clinically acceptable range. Therefore, according 
to the available evidence, McLean et al.72 indicated 
that a maximum margin gap of 120 μm is regarded 
clinically acceptable. Boening et al.73 also suggested 
that a marginal gap between 100 μm and 200 μm 
may fall within the clinically allowed range. The 
results indicate that the materials chosen for the 
investigation maintained a satisfactory, marginal 
fit even after undergoing thermomechanical aging, 
similar to the effects observed after 6 months of oral 
service.

Concerning fracture resistance, the hypothesis 
was rejected. The fracture resistance of tested G-
PMMA crowns (1574.5+368.1 N) showed no sig-
nificant improvement relative to PMMA crowns 
(1539.2+80.6 N). The observed behavior could be 
attributed to the extremely low concentration of gra-
phene. This is consistent with the findings of Punset 
M et al., who documented that the concentration of 
graphene, similar to the material investigated in this 
study, which the manufacturer does not reveal, was 
examined using Raman spectra and determined to 
be 0.027% by weight using the phase rule. 43

Nevertheless, several studies have demonstrated 
that the mechanical characteristics of polymers were 
enhanced when the graphene concentration was 
low.74,75 Alamgir et al. discovered that graphene was 
incorporated into the PMMA resin at a concentration 
of 0.0025 wt%, which was very low, yet it led to 
enhanced resistance to deformation and a higher 
Young’s modulus in the nanocomposite compared 
to PMMA.76

However, graphene’s use as a reinforcement in 
composites exhibits remarkable efficacy in terms 

of mechanical characteristics. Various applications 
employ a 2.5% weight concentration of the compos-
ite material.77 These ingredients are unsuitable for 
prosthetic materials that require excellent aesthet-
ics. However, evidence suggests that when the gra-
phene concentration in PMMA surpasses 0.35%, it 
has a significantly dark color, deemed unsuitable for 
maintaining good dental aesthetics.78

One crucial factor to consider is that the literature 
reports average occlusal forces of 250 and 350 N 
in the incisor and molar regions, respectively. Nev-
ertheless, individuals suffering from bruxism may 
incur far greater forces, and existing evidence indi-
cates that these values might rise to 720–900 N.79-81 

The fracture values, which surpassed the maximal 
masticatory forces of around 900 N, indicate that 
all the materials investigated possess the capacity to 
withstand the clinically encountered forces. 

Regarding the clinical significance, contrary to 
a recent study,11 the current results indicate that the 
specific graphene-reinforced PMMA polymer being 
studied differs from traditional CAD/CAM PMMA 
polymers, particularly in its mechanical responses 
to compressive stresses. Hence, the current data do 
not provide evidence to expand the clinical uses 
of graphene-reinforced PMMAs beyond those of 
traditional CAD/CAM PMMAs. Therefore, it is 
recommended that they continue to be considered 
efficient long-term interim materials rather than 
alternating materials for permanent restorations. 
Nevertheless, some manufacturers assert that their 
graphene-reinforced PMMA-based material is 
suitable for definitive prostheses.27 However, the 
evidence regarding the mechanical dominance 
of dental restorative materials reinforced with 
graphene remains limited.27,43,82 

An inherent limitation of the current study is 
that it exclusively utilized commercially accessible 
dental materials. Furthermore, the manufacturers 
refrained from revealing the graphene amount 
incorporated into the graphene-reinforced polymer 
under investigation as a patent safeguards the 
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composition. The method to include or chemically 
bind the graphene to the PMMA polymer must 
be clearly defined. Enhanced details regarding 
the manufacturing process, including the specific 
amount of graphene, should be revealed to 
understand better any potential relationship between 
the real graphene concentration and the material’s 
final mechanical qualities and biocompatibility. 
Another area for improvement of the current 
work was the absence of any attempt to examine 
graphene’s composition and grain size incorporated 
into PMMA using Raman spectroscopy or scanning 
electron microscopy (SEM)/X-ray diffractometry 
(XRD) analysis.43,83,84 Exploring this aspect could 
be a captivating area for future investigation.

CONCLUSIONS 

The mean marginal gap between PMMA and 
G-PMMA fell within the clinically acceptable 
range. Neither material exhibited fracture values 
beyond the maximal masticatory forces in the 
posterior area, showing the ability to withstand the 
clinically encountered forces. The clinical uses of 
graphene-reinforced PMMA align with those of 
traditional CAD/CAM PMMAs. It is recommended 
that they continue to be considered efficient long-
term interim materials rather than being selected as 
substitutes for permanent restorations. 
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