INTRODUCTION

Odontogenic cysts constitute a major part of the maxillofacial pathology\(^{(1)}\).

Developmental and inflammatory odontogenic cysts are epithelial in origin, exhibiting slow growth and a tendency toward expansion. These lesions can reach large size if they are not diagnosed and treated early\(^{(2)}\) fluid accumulates between the crown and enamel organ of an unerupted tooth\(^{(3)}\). These type of cyst usually expands Buccalyl\(^{(4)}\).

The size of the cyst increases by epithelial proliferation, release of bone resorbing factors and an increase in cyst fluid osmolality\(^{(5)}\). The exact histogenesis of dentigerous cyst is unclear. It could be inflammatory or developmental in origin \(^{(5,6)}\).

Odontogenic keratocysts (OKCs), now known by the World Health Organization as keratocystic odontogenic tumor\(^{(7)}\). OKC represents an aggressive form of odontogenic cyst, it have a higher recurrence rate. Although it is considered benign in nature, aggressive treatment of kerato cyst is required\(^{(8,9)}\).
The advised treatment protocol included curettage and use of application of Carnoy’s solution\(^{(9)}\) in addition to the application of liquid nitrogen cryotherapy\(^{(11)}\), segmental aggressive curettage\(^{(12)}\) localized segmental resection\(^{(13)}\). Other advised more aggressive resection\(^{(13,14)}\). Cystic lesions of the jaw can be treated either by enucleation or marsupilization depending on their size, location and proximity to vital structures as teeth, maxillary sinus, nasal cavity and mandibular canal as well as continuity of bone margins\(^{(15)}\). Small cysts are enucleated while large cysts are marsupialized initially and then enucleated at later stage\(^{(16)}\).

The choice depends on the topography of the cyst as well as the integrity and proximity of adjacent structures. In dentigerous cysts marsupilization procedure is indicated, mainly to preserve the associated tooth and minimize surgical trauma in pediatric population\(^{(17)}\).

Marsupialization, has been used as a more conservative form of treatment for large OKCs to minimize the cyst size and limit the extent of surgery\(^{(18-22)}\).

Another important factor is the accessibility of the cystic cavity for surgical intervention and regular irrigation. A new technique (tube decompression procedure) used in this study facilitate surgical deroofing as well as frequent irrigation of inaccessible areas such as mandibular ramus region.

MATERIALS AND METHODS

This study presents three years follow up of use of our algorithm in management of large odontogenic cystic lesions of the mandible. The study included two groups of patients who attended the oral and maxillofacial department, specialized dental teaching hospital. The first group twenty patients suffering from large mandibular dentigerous cysts. The other group, twenty patients who had large keratocyst. The female male ratio were equally distributed in both groups. The lesion minimum size was 4 cm. The mean age ranged from 7-45 years All patients underwent preoperative Panoramic (OPG) radiography and computed tomography(CT) scanning the size of the lesion. All patients signed an informed consent form before undergoing any procedure included in this study. Histopathology confirmed their diagnosis of dentigerous or keratocyst. Decompression of the lesions was done through irrigation tube both groups. The algorism of management was followed Fig. (1). In dentigerous cystic of lesion with lesion size less than 4 cm, enucleation was the treatment of choice. Lesions with average size more than 4 cm will have irrigation decompression tube, with or without extraction of the associated impacted teeth. Lesions that showed recurrence will be aggressively enucleated. In OKC lesions, if the lesion is less than 4 cm, that will be enucleated aggressively, Cornoy’s solution will be applied. Lesions more than 4 cm will have irrigation decompression tube, till decrease in size with the application of cornoy’s solution. Cases that showed recurrence, marginal resection of the lesion will be carried out.

Surgical procedure

Endotracheal intubation was performed using Isoflurane orion, Egypt. Profound regional anesthesia with Articaine hydrochloride 4% (3M ESPE, Germany). The cystic lesions were marsupialized by creating a soft tissue opening in the facial aspect of the cystic cavity (about 1cm in diameter, taken as incisional biopsy). The cyst wall was sutured to the oral mucosa. After that a plastic tube catheter was introduced into the depth of the cystic cavity through the soft tissue opening, the distal end of the tube was fixed using stainless wire into adjacent tooth (1). The cystic cavity irrigated with Povidone-iodide solution (The Nile Co. for pharmaceuticals and chemical industries, Cairo, Egypt), and warm 0.9% saline through the plastic tube. The Patient or his parents were instructed to irrigate the tube after each meal and at least three times daily with the same irrigation solutions.
Follow-up:

Post-operative medications including mild analgesic and short course of oral antibiotic were prescribed. Patients were instructed to irrigate the cyst cavity through the plastic tube five times daily using 0.9% saline and Povidone-iodide solution. All cases were recalled every two weeks to assure wound condition and adequate irrigation of cystic cavity. All cases were evaluated using digital panorama (OPG), and CT, pre-operatively, 3 & 6 months post-operatively until complete resolution of the lesion and annually for three years Fig 2 (a,b,c,d,e) of dentigerous cysts or considerable decrease in the cyst cavity in keratocystic lesions Fig 3(a,b,c,d).

Fig. (1) Intra-operative clinical photograph, the tube introduced inside the cystic cavity through the mucosal opening and fixed to the mandibular arch bar.

Fig. (2a) OPG panoramic radiograph showing a large dentigerous cyst at the right mandibular area of 8th year boy.

Fig. (2b) OPG panoramic radiograph showing a large dentigerous cyst at the right mandibular area of 8th year boy during 3 months follow up.

Fig. (2c) OPG panoramic radiograph showing a large dentigerous cyst at the right mandibular area of 8th year boy at 6 months follow up.

Fig. (2d) OPG panoramic radiograph showing a large dentigerous cyst at the right mandibular area of 8th year boy at the end of treatment showing eruption of the impacted premolars.

Fig. (2a,b,c,d) OPG panoramic radiograph showing the tube inserted in a large dentigerous cystic cavity occupying the right mandibular body in 8 years old boy and its follow up until complete resolution of the lesion and eruption of the permanent premolars.
ALGORITHM IN THE MANAGEMENT OF LARGE ODONTOGENIC CYSTIC LESIONS

RESULTS

The surgical procedure was well tolerated by all patients. No complications were encountered except accidental tube displacement in two pediatric cases; the tube was reinserted again and fixed. Complete resolution of the cystic lesion was achieved during follow-up period. In all dentigerous cyst cases, in 15 cases the associated impacted teeth were removed during the primary surgery, in 5 cases of the impacted tooth erupted during follow up. On the other hand although, significant decrease in the cystic cavity of kerato cysts was achieved, all of the cases required second surgery to excise the rest of the lesions.

No change of inferior alveolar nerve was reported. In both groups in the dentigerous cyst group; the associated impacted tooth was preserved in four cases; even erupted in two cases, the other four cases were associated with impacted third molar which have been extracted at the end of treatment. Post-operative radiograph revealed successful new bone formation within the cystic cavity with re-establishment of mandibular outline. In the kerato cyst group similar results were achieved; no nerve affection was noticed in all cases, eruption of the associated impacted teeth was found in six cases. However, no complete resolution of the lesion was found; therefore all the cases in that group required secondary surgery, curettage or segmental resections after the cyst size has decreased Fig (4a,b,c). Significant increases in bone density and a remarkable decrease in the cystic cavity were found 3 months after marsupialization, compared with the preoperative values, indicating that significant bone regeneration had occurred in the cyst site. Bone density measurements of the two groups showed marked increase after 6 month follow up, with comparable values of the lesion after 12 months.

Lesions less than 4 cm in size showed no recurrence in both groups, on the other hand lesions lesions measured more than 4 cm behaved differently between the two groups, in the dentigerous cyst group no recurrence were found with complete resolution of the lesions. The OKC group recurrence were found in two patients after 12 months, those required aggressive resection of the lesion. There was no difference in the behavior of the lesions between orthokeatenized and parakeratenized lesions.
DISCUSSION

There are two basic surgical procedures, namely marsupialization and enucleation\(^{(23)}\). Marsupialization procedure and consists of surgically producing a window in the cystic wall to relieve intra-cystic tension\(^{(24)}\). The technique have the disadvantages that it is a two-stage surgical procedure, pathological tissue is left behind and a more aggressive pathological lesion might arise from it, in a large cystic cavity, it takes a long time to resolute. So, enucleation with primary closure is the treatment of choice\(^{(3,22)}\). It could be consedered when the cystic cavity is small and there is good bone adjacent to the cyst cavity\(^{(4)}\).

Marsupialization is a surgical technique by which a window is produced in the wall of the cyst to relieve the intra-cystic pressure so, enable the cavity to decrease gradually in size. This approach was first introduced by Partsch 1892 and has become known as Partsch I technique.\(^{26}\) The difference in bone healing mechanism after enucleation and marsupialization is the key to plane treatment strategy for cystic lesion. After cyst enucleation and primary closure bone formed through the cavity with ground glass appearance while after marsupialization the center of the cavity is regenerated by creeping substitution from the adjacent bone with longer healing time\(^{(27,28)}\).

Therefore that if the cystic lesion is inaccessible that primary closure is questionable, marsupialization alone or marsupilization with secondary enucleation is the treatment of choice. In another words primary cyst enucleation with primary closure should be the first treatment option for small accessible lesions\(^{(29)}\).

Another factor influence the treatment plane of the odontogenic cyst is the histopathology of the lesion itself, dentegrouse and residual cysts could be managed by marsupialization; while odontogenic keratocyst and unicystic ameloblastoma are not amenable for such technique\(^{(30,31,32)}\).

Marsupialization considered is a well-established minimally invasive treatment of large odontogenic cysts. It offers the advantages of preservation of the vital structures, minimal surgical trauma and less risk of pathological fracture; the patient however should be compliant and accepting the prolonged treatment period\(^{(33)}\).

The principal of marsupilation is creating an opening in the cyst wall to decrease intra cystic pressure and hence reverse resorptive bone activity, however the maintenance of this opening...
requires the use of cyst bulge which need frequent adjustment and not practical especially in pediatric population\(^{(34)}\). The tube decompression procedure offers a better tool to keep the cystic cavity patent and facilitates regular irrigation by the patient. The present technique minimizes the disadvantages of marsupialization procedure especially in inaccessible regions and in pediatrics. An impacted tooth is reported to be able to erupt more rapidly if marsupialization therapy is performed at a time when the tooth has the ability to erupt\(^{(35)}\).

The technique allows partial resolution and decrease in size in the keratocyst so that teeth or the inferior alveolar nerve may be spared\(^{(36)}\).

Radiographic examinations at regular intervals to observe the progress of bone regeneration of the defect and also allows pathologic examination of the entire specimen for histopathologic diagnosis.

Radiography is the major nonoperative method for detecting bone formation in a healing osseous wound or defect. Bone formation is radiographically expressed as an increase in radiopacity, resulting in greater optical density of the bone image. To determine the process or progression of bone formation, the radiopacity changes between radiographs should be compared using quantitative analysis and objective evaluation of the radiographic images\(^{(40-42)}\).

Cysts can be enucleated safely as early as 3 months after marsupialization. However, if the cyst volume is larger than 80 mL and the cortex is very thin or even absent before marsupialization, secondary enucleation should be delayed for another 1 to 3 months\(^{(43,44)}\).

CONCLUSIONS

The algorithm provides successful surgical protocol suitable for large odontogenic cystic lesions. The current technique provides simple surgical procedure suitable for inaccessible large cystic lesions such mandibular ramus region, the use of arch bar and possible tube displacement are the only recorded disadvantages of the technique. Decompression does require a cooperative patient who will irrigate the cyst on a regular basis and will follow up regularly therefore, only a select group of patients may be suitable for this treatment. The denigerous cystic lesion achieved complete resolution, while in the keratocystic lesions it decreased in size only, that required second surgery to excise the lesion.

REFERENCES

43. Chi A, and Neville B: Odontogenic Cysts and Tumors Surgical Pathology Clinics, 2011, 4, 1027-1091